Errata

Biological and Bioenvironmental Heat and Mass Transfer by A. K. Datta (Published by CRC Press Imprint of the Taylor & Francis Group) Last updated: March 16, 2007

Page	Changes
	Heat Transfer
25	Problem 2.7.4:average surface temperature of sun to be <u>5800</u> K.
49	Text before Equation 4.11: Rewriting the equation in terms of flow, we get
66	Problem 4.8.6, Line 5: Show that the total thermal resistance
88	Problem 5.9.4, Line 8:temperature of <u>one</u> aluminum <u>particle</u> to equilibrate; Line 13: <u>Mass</u> <u>of each particle is 18 g</u> .
92	Problem 5.9.17: Initial temperature of potato is 30°C. The thermal conductivity and thermal diffusivity of potato are 0.65 W/mK and 1.66x10 ⁻⁷ m ² /s, respectively
108	Comments to Example 6.6.1: Note that the <u>heat transfer coefficient</u> (at $x = 10$ cm) is higher than the average <u>heat transfer coefficient</u> .
110	Section 6.6.4: B = 0.683, n = 0.466 for 40 <re<sub>D<4000</re<sub>
118	Problem 6.10.6: Second line from bottom should sayheat input to a 0.15 mm <u>diameter</u> wire
119	Problem 6.10.8: Third line from bottom should read \dots surface area of <u>one side of</u> one ear is 0.84 m ² ."
119	Problem 6.10.9:viscosity of sea water is approximately 2 x <u>10⁻³</u> Pa s
121	Problem 6.10.14, last line:container has a surface area of 0.04 m ²
135	Equation 7.14: ΔH should replace λ in the equation.
153	Equation 8.11: Denominator on the right hand side of equation should be multiplied by σ
160	Figure 8.18 title: Add to the current line— <u>All quantities are fluxes</u> , measured in W/m^2 .
161	Equation 8.22: $q_{1-2} = \sigma A_2 F_{2-1} (T_1^4 - T_2^4)$
Mass Transfer	
208	Figure 10.8: Vertical axis label should be "Diffusivity in water $(x \underline{10}^{\underline{11}} \text{ m}^2/\text{s})$ "
218	Item number 3 under the first bullet should read: Hydraulic conductivity depends on the fluid properties (density and viscosity) and matrix property called intrinsic permeability that takes into account the pore size distribution, shape of pores, porosity, and tortuosity.
222	Problem 10.9.7: The diffusivity of human immunoglobin (a protein) is $4x \underline{10}^{-11} \text{ m}^2/\text{s}_{\cdots}$
271	Problem 13.8.5: Need K* value but if $K^{*}pprox 1$, $m=D_{_{AB}}/(h_{_{M}}LK^{*})pprox 0$
273	Problem 13.8.12: Assume very high mass transfer coefficient
274	Problem 13.8.13 last line: The soil dry density
303	Schematic and Given Data: Item 1) $c_{\mathrm{O}_2,\infty} = 2.26 \times 10^{-4} \dots$
310	Problem 14.9.9: Item 4) If the total evaporative water loss (total EWL) from the <u>two eyes</u> and the body surface Also, vapor pressure is provided in the appendix.
311	Problem 14.9.13: Consider a stagnant water at 25°C with a <u>spherical</u> colony of microorganism